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Abstract. There are various problem domains (including symbolic computations,
computer algebra and others) in which it is convenient to use typeless programming
languages such as Lisp, Refal, Prolog etc. It is learned from practice that the impor-
tance of the typelessness of these languages is sometimes no less than the importance
of their primary programming paradigms.

In the paper the well-known S-expression model of heterogenous (mixed type)
dynamic data structures is considered as a separate programming paradigm which is
to be imported into an object-oriented environment, namely the environment of the
C++ language. A library of C++ classes and templates which allows to handle S-
expressions within a C++ program is described. The library lets the programmer to
use natural Lisp-like syntax creating S-expressions. Using S-expressions as containers
for objects of user-invented data types is also possible.

1 Introduction

Nowadays, imperative object-oriented languages such as C++[1], Java, C#, etc. are popular in the
software industry. While many programmers are able to use programming paradigms other than im-
perative and object-oriented, and in almost any project there are subtasks where alternate paradigms
are useful, there’s often no chance to use paradigms such as functional programming [2] in a real
project due to numerous difficulties with integrating different programming languages within a single
project.

The solution first introduced in [3] is to create a class library for a popular language such as C++
which implements a computation model together with data structures of an alternate programming
language. The InteLib library as introduced in [3] was capable to let the programmer do Lisp pro-
gramming within a C++ program using expressions syntactically similar to traditional S-expressions
[4].

The library was later extended for the computational model of Refal [5]. A demo version for a
small subset of Prolog [6] was also created. The results are described in [9]. All the parts of the library
use the data structures initially created for the Lisp part, which in fact just models S-expressions1 .

1The Refal part performs actual computations on certain optimized data structures, so the S-expressions are
used only to build functions and the input data for them.
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The notion of S-expression plays a significant role in what we know as ”Lisp programming”.
Practice shows that it is actually possible to make use of S-expressions without the Lisp itself (and
without the notion of evaluation of S-expressions). Other programming languages, such as Refal or
Prolog, in fact use similar models of data, inventing completely different evaluation model. The S-
expression model may be used in traditional imperative programming as well; such data structures are
good in situations when pieces of data of completely different nature are to be handled together (e.g.
in formulae processing), or when it is hard to say what particular data will be used in a certain task
(e.g. in rapid prototyping). Both cases do not imply (though not decline as well) the need of evaluation
of the data structures in terms of Lisp or any special evaluation model.

This lets us to speak about S-expression model as a separate programming paradigm which doesn’t
depend on a particular evaluation model, including Lisp.

Once this fact was realized, the architecture of InteLib got refactored in order to separate the
S-expressions themselves (as data structures) from the Lisp evaluator. In this paper the base part of
the new version of InteLib is described. It is intended to let the programmer use heterogenous data
structures within the C++ environment, even in the role of containers.

The base part of the new library enables a programmer to use the notion of S-expression (het-
erogenous data and conses as we used to use in Lisp) within a C++ project, in a natural way (with
syntax which is close to the original Lisp), and without the need of any preprocessing of the code.

2 Architecture of the library

The library is organized as a core function set and a pool of optional features. The core provides classes
which represent traditional atomic S-expressions and conses. The operations of constructing, handling
and analysing Lisp-like lists are also a part of the core.

Simple reference counting mechanism of garbage collecting is provided; for the projects which
use one of existing garbage collecting techniques, the reference counting can be switched off by a
compile time option.

2.1 Primary types of S-expressions

The library provides the following basic atomic value types: integer constant, floating point number
constant, string constant, and a label. Single character is considered to be equal to a string of one
character.

The label is an S-expression for which only its identity is important, that is, each label differs
from any other S-expression and that’s all about it. Labels are known as symbols in Lisp, constants in
Prolog and label symbols in Refal. Also this type of S-expressions is used for representing the empty
list objects and the boolean true and false values.

The actual types of values stored by numberic S-expressions may be set to any of the built-in C
types, e.g. to long for integer constants and double for floating point number constants; this is
controlled by compile-time options.

Besides the atomic S-expressions, the core invents conses, the well-known type which consists
of two references to other S-expressions. Having assigned an object of the type label to represent the
empty list, one can build traditional Lisp lists which can consist of objects of different types including
other lists.

The classes representing these S-expressions are named SExpressionInt,
SExpressionFloat, SExpressionString, SExpressionLabel and
SExpressionCons, respectively. All these classes are derived from the basic abstract class
named SExpression. Unless disabled by a compile-time option, the class implements a
mechanism of reference counting.



A framework of heterogenous data structures 3

C++ constructs Lisp equivalent
(S| 25, 36, 49) (25 36 49)
(S| "I am the walrus", 1965) ("I am the walrus" 1965)
(S| 1, 2, (S| 3, 4), 5, 6) (1 2 (3 4) 5 6)
(S| (S| 1, 2), 3, 4) ((1 2) 3 4)
(S| 1 || 2) (1 . 2)
((S| 1, 2, 3)|| 4) (1 2 3 . 4)

Table 1: Examples of S-expressions represented with C++ constructs

2.2 Common handler

In order to make handling of SExpressions more convenient, a ”smart pointer” to an
SExpression is made, named SReference. One of its primary duties is to perform reference
counting on the SExpression objects; to do so, objects of the SReference class notify the re-
spective SExpression objects about creating or removing a link to the object.

Besides that, SReference implements some generic support for the S-expressions included
into the core part of the library. The class implements constructors for coercion from all existing C++
built-in numberic types (char, short, int, long, both signed and unsigned, and float, double
and long double) as well as from const char* which stands for a string constant, creating S-
expressions of the respective types2. A constructor for creating a cons is also available and it has two
arguments of the SReference type, which are used as values of the head and tail parts of the newly-
created cons. The class has methods GetInteger(), GetFloat() and GetString() which
allow to convert the referenced S-expression into the respective built-in data type, if it is possible;
when it is impossible, e.g. if GetInteger() is called for an object which references on a label S-
expression, an exception is thrown. Functions Car() and Cdr() (which return the respective parts
of a cons) are available to make list analysing easier. The functions Car() and Cdr() return a ref-
erence to the respective SReference inside the SExpressionCons object thus making possible
changing the parts of the dot pair.

2.3 List composition operations

The authors of [8] offer to build lists of conses with a function cons, which builds a cons of the given
two arguments. The function is called explicitly. This solves the problem of list building, but the form
of the code doesn’t seem to be similar to the traditional Lisp notation. E.g., the list (1 2 3) is to be
represented with

cons(new l_int(1), cons(new l_int(2),
cons(new l_int(3), &nil)));

where l_int is the class which represents Lisp integers, nil is the object which marks the list end,
and cons is the functions which builds conses.

In practice such a notation is not appropriate because of its complexity and poor readability. Really,
a programmer who is familiar with Lisp would hardly agree to use such unclear constructs to represent
Lisp lists.

The SReference class implements a technique of constructing Lisp lists introduced in [3],
which in fact solves the problem of complexity and clarity of list construction.

In Lisp there’s an operation of constructing a list of an arbitrary length denoted by parentheses.
The operation has variable ’arity’. For example, a construct (1 2 3) has 3 arguments and builds a

2Support of long long int depends on whether the compiler supports it.
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list of 3 items - 1, 2 and 3. Besides that, there’s a binary operation which builds a cons (dotted pair),
such as (1 . 2). The construct (1 2 3) has the same effect as a superposition of 3 dotted pair
constructors, like this:

(1 2 3) == (1 . (2 . (3 . NIL)))

One can implement an operation similar to the Lisp’s ‘(.)’ and it will allow us to build any list of
S-expressions. It is though a bit inconvenient to create lists only using this operation (imagine you
couldn’t use plain lists in Lisp, only dotted pairs).

Another problem is that one might want to use just a C++ constant or expression without explicit
cast of it to an S-expression, e.g. ‘3’, not a construct like SReference(3), so in case of an over-
loaded standard operation we need at least one of operands already of SReference type, which
allow the compiler to understand we mean the overloaded operation, not the standard one. This re-
quirement also prevents us from using C++ functions with unspecified number of arguments because
there’s no way to determine at run time what types of actual parameters do we have.

The problem is solved replacing the Lisp ‘()’ operation of an arbitrary list composition with two
operations. First of them creates a list of one element, while second adds an element to a given list.
It is clear the two operations allow to create an arbitrary list, that is, their combination has the same
functionality as the Lisp ‘()’ operation.

The first operation always has exactly one argument, but we can’t use a symbol of any standard
unary operation for it because we want it to be applicable to an expression of some C++ built-in
types. We also don’t want to use a plain function for this purpose because parentheses would make our
constructs less clear. The problem is solved with a class SListConstructor, which is created to
be a label for a binary operation to show the compiler to apply an overloaded one instead of the built-
in operation. Usually there’s only one instance of SListConstructor named S. For example, an
operator S|3 returns an SReference object that represents Lisp construct (3).

For appending a new item to a list we can overload any overloadable binary operator. For a better
clarity, the C++ comma (,) is used for this purpose. Left-hand operand of a comma is always an
SReference representing a list. Comma destructively changes the list replacing the final NIL with
a dotted pair of (X . NIL) where X is its right-hand operand casted to an SReference. This
makes it possible to represent Lisp lists in C++ as shown in table 1.

For composing dotted pairs and dotted lists InteLib offers an operation ||. The left-side operand
must be a list (possibly of one element). The operand appearing at the right side of the operator
is converted to SReference and then the operation replaces the last NIL of the given list with
whatever it constructed from the right-side operand. See table 1 for an example.

Note the parentheses in the last example. They appear because the comma operator has lower
precedence than ||.

2.4 Constant S-expression handling

For being consistent with C++ traditions, there is also a constant version of SReference named
SConstReferencewhich makes sure the referenced S-expression will not be changed unless im-
plicit type conversion is used.

The SConstReference class has almost the same capabilities as ṠReference. except that some
methods including Car() and Cdr() return constant references and pointers thus preventing the
caller from changing any existing S-expressions. The list construction operations are also not available
for SConstReference because of their destructive nature.

An object of SConstReference can be created as a copy of an SReference object. At-
tempt to make an SReference from SConstReference causes duplicating of the referenced
data structure. Since some SExpression objects can not be modified anyway, only the objects
of changeable S-expressions are copied. Among the mentioned types of S-expressions, only the
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Constants Changeable objects

SExpressionLabel

SExpresionInt

SExpressionFloat

SExpressionString

SExpressionCons

SExpressionVector

SExpressionHashTable

SWrapper<T>::SExpr.

SExpression

SWrapper<T>

SVector

SString

SMatrix<n>

SHashTable

Legend: Class Template

Category

Inheritance

Collaboration

SReference SConstReference

Figure 1: Classes hierarchy

SExpressionCons is considered changeable, while all the rest are not; that is, the process of du-
plication of an S-expression works recursively, so that the resulting copy has its own changeable items
and shares those which cannot be changed with the source data structure. Note that a string constant
is considered atomic and therefore unchangeable.

2.5 Additional data structures

Besides the classic S-expression types, the library also provides some additional facilities. First of
them is the SString class derived from SReference, which always references to an object of the
SExpressionString class and provides some obvious operations on strings, such as concatena-
tion, inserting or erasing a sequence of characters etc. It is not so efficient as the well-known standard
string class because it always creates a copy of the string on any modification. However, when being
used for handling constant strings, it performs at the same level of efficiency as string. Using this
class for internal purposes (namely for building and storing textual representations of S-expressions)
allows not to depend on STL and, therefore, to use the library in projects where using of STL was
declined for some reasons.

Another useful feature is a dynamically-resized vector of S-expressions. It is implemented by
several classes. First of them, SExpressionVector, is a changeable S-expression which stores a
vector of references to other S-expressions. Note that deriving this class from SExpression allows
a vector to reference to other vectors emulating an arbitrary-dimensional array.

Another class, SVectorRef, derived from SReference, is an interface to vectors
which provides operator[]() for users’ convenience. This class is just a smart pointer to
SExpressionVector, that is, when SVectorRef object is assigned, it leads to two references
to the same vector. SVectorRef can also be a null reference. Therefore SVectorRef is not yet a
”first-class container”.

Behaviour reasonable for containers is implemented by SVector class. This class is derived
from SVectorRef changing the functionality a bit. First, SVector is never a null reference; its con-
structor automatically creates an SExpressionVectorobject. Second difference is that SVector
never shares the referenced object with others. Copies (clones) are made always when the SVector
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is assigned to another vector in any way.
Besides that, there’s also a template class SMatrix<int dim> for handling a ma-

trix of S-expressions. The template’s argument dim controls the returning type of the
operator[](): for SMatrix<2> it returns SVector object, and for any integral n > 2

SMatrix<n>::operator[]() returns an object of SMatrix<n− 1>.
The class SExpressionVector has a virtual method which controls the ability of the vector

to resize. By default, the method denies any resizing if the object was constructed with a particular
size value; otherwise, if the object was constructed with its default constructor, the method resizes
the actual vector to the closest power of 2 each time when an illegal (too high) index is passed to the
operator[]().

The last additional S-expression type to be mentioned is a hash table, which is implemented
by SExpressionHashTable, SHashTableRef and SHashTable classes. Both the key and
the value of an item stored in the table are S-expressions. The table always has a length of a prime
number and resizes automatically as needed. The hash function is computed differently for different
types of S-expressions using virtual methods specially intended for this purpose. The behaviour of
SHashTableRef and SHashTable classes is similar to SVectorRef and SVector, respec-
tively.

2.6 User-defined S-expressions

The library provides a template class named SWrapper<class T> which allows to
create an S-expression of a user-defined type. The parameter T must be a structure
or a class. SWrapper is derived from SReference, and it invents a member class
SWrapper<T>::SExpressionWrapper which is derived from SExpression.
SWrapper<T> acts like a pointer to an object of T, that is, it has the appropriate operators *
and ->. This allows S-expressions to be used as containers for data objects of arbitrary types. In
contrast with traditional containers, this technique allows to store heterogenous data in a container,
thus producing heterogenous lists, vectors, matrices and hash tables.

3 Conclusion

The library described in this paper was used as a basis for implementing computation models of Lisp
and Refal as C++ class libraries; implementation of the Prolog and Datalog [7] models are in progress.

Also the library was used in some programs which has no direct relationship to multilingual
programming. The list of these programs includes an object-oriented wrapper for the well-known
XML[10] handling library Expat [11]. Actually, the XML data model is naturally isomorphic to the
model of S-expressions, which makes it convenient to use S-expressions for accessing and analysing
data extracted from an XML source.

Improving the C++ environment with the model of S-expressions can make it easier to solve in
C++ some tasks which traditionally considered to be hard for C++ while easy for Lisp and other
artificial intelligence languages. This also demonstrates the flexibility of C++ which in fact allows to
do multiparadigm programming using only libraries, not language extensions.

Practice shows that the notion of S-expression, which initially came from Lisp programming, can
as well be useful outsude the Lisp environment. This allows to reconsider a definition of Lisp pro-
gramming from multiparadigm point of view; despite the fact that functional programming, including
lambda calculus, is still important, sometimes Lisp programming can be considered as programming
with S-expressions. This is perfectly illustrated by tasks of automated formulae processing (including
symbolic differentiation); it is the notion of S-expression what makes Lisp specially useful in this
problem domain.

Having said all this, we conclude the notion of S-expression may be considered as a separate
programming paradigm which is not limited to Lisp environment. The library described in the paper



A framework of heterogenous data structures 7

makes it possible to use this paradigm within the environment of C++, one of the popular industrial
programming languages.
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